Model spaces in sub-Riemannian geometry (1610.07359v4)
Abstract: We consider sub-Riemannian spaces admitting an isometry group that is maximal in the sense that any linear isometry between the horizontal tangent spaces is realized by a global isometry. We will show that these spaces have a canonical choice of partial connection on their horizontal bundle, which is determined by isometries and generalizes the Levi-Civita connection for the special case of Riemannian model spaces. The number of invariants needed to describe model spaces with the same tangent cone is in general greater than one, and these invariants are not necessarily related to the holonomy of the canonical connections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.