An introduction to higher Auslander-Reiten theory (1610.05458v2)
Abstract: This article consists of an introduction to Iyama's higher Auslander-Reiten theory for Artin algebras from the viewpoint of higher homological algebra. We provide alternative proofs of the basic results in higher Auslander-Reiten theory, including the existence of $d$-almost-split sequences in $d$-cluster-tilting subcategories, following the approach to classical Auslander-Reiten theory due to Auslander, Reiten, and Smal{\o}. We show that Krause's proof of Auslander's defect formula can be adapted to give a new proof of the defect formula for $d$-exact sequences. We use the defect formula to establish the existence of morphisms determined by objects in $d$-cluster-tilting subcategories.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.