Papers
Topics
Authors
Recent
2000 character limit reached

Structured Random Matrices (1610.05200v1)

Published 17 Oct 2016 in math.PR

Abstract: Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.