Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Nonnegative kernels and $1$-rectifiability in the Heisenberg group (1610.04590v1)

Published 14 Oct 2016 in math.CA, math.FA, and math.MG

Abstract: Let $E$ be an $1$-Ahlfors regular subset of the Heisenberg group $\mathbb{H}$. We prove that there exists a $-1$-homogeneous kernel $K_1$ such that if $E$ is contained in a $1$-regular curve the corresponding singular integral is bounded in $L2(E)$. Conversely, we prove that there exists another $-1$-homogeneous kernel $K_2$, such that the $L2(E)$-boundedness of its corresponding singular integral implies that $E$ is contained in an $1$-regular curve. These are the first non-Euclidean examples of kernels with such properties. Both $K_1$ and $K_2$ are weighted versions of the Riesz kernel corresponding to the vertical component of $\mathbb{H}$. Unlike the Euclidean case, where all known kernels related to rectifiability are antisymmetric, the kernels $K_1$ and $K_2$ are even and nonnegative.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube