Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards end-to-end optimisation of functional image analysis pipelines (1610.04079v1)

Published 13 Oct 2016 in cs.CV, q-bio.NC, and stat.ML

Abstract: The study of neurocognitive tasks requiring accurate localisation of activity often rely on functional Magnetic Resonance Imaging, a widely adopted technique that makes use of a pipeline of data processing modules, each involving a variety of parameters. These parameters are frequently set according to the local goal of each specific module, not accounting for the rest of the pipeline. Given recent success of neural network research in many different domains, we propose to convert the whole data pipeline into a deep neural network, where the parameters involved are jointly optimised by the network to best serve a common global goal. As a proof of concept, we develop a module able to adaptively apply the most suitable spatial smoothing to every brain volume for each specific neuroimaging task, and we validate its results in a standard brain decoding experiment.

Citations (2)

Summary

We haven't generated a summary for this paper yet.