Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deterministic parallel algorithms for fooling polylogarithmic juntas and the Lovasz Local Lemma

Published 11 Oct 2016 in cs.DS, cs.DC, and math.PR | (1610.03383v10)

Abstract: Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low (almost-) independence. A series of papers, beginning with Luby (1993) and continuing with Berger & Rompel (1991) and Chari et al. (2000), showed that these techniques can be combined to give deterministic parallel algorithms for combinatorial optimization problems involving sums of $w$-juntas. We improve these algorithms through derandomized variable partitioning and a new code construction for fooling Fourier characters over $GF(2)$. This reduces the processor complexity to essentially independent of $w$ while the running time is reduced from exponential in $w$ to linear in $w$. As a key subroutine, we give a new algorithm to generate a probability space which can fool a given set of neighborhoods. Schulman (1992) gave an NC algorithm to do so for neighborhoods of size $w \leq O(\log n)$. Our new algorithm is NC1, with essentially optimal time and processor complexity, when $w = O(\log n)$; it remains NC up to $w = \text{polylog}(n)$. This answers an open problem of Schulman. One major application of these algorithms is an NC algorithm for the Lov\'{a}sz Local Lemma. Previous NC algorithms, including the seminal algorithm of Moser & Tardos (2010) and the work of Chandrasekaran et. al (2013), required that (essentially) the bad-events could span only $O(\log n)$ variables; we relax this to $\text{polylog}(n)$ variables. We use this for an $\text{NC}2$ algorithm for defective vertex coloring, which works for arbitrary degree graphs.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.