Exponential growth of some iterated monodromy groups
Abstract: Iterated monodromy groups of postcritically-finite rational maps form a rich class of self-similar groups with interesting properties. There are examples of such groups that have intermediate growth, as well as examples that have exponential growth. These groups arise from polynomials. We show exponential growth of the $\operatorname{IMG}$ of several non-polynomial maps. These include rational maps whose Julia set is the whole sphere, rational maps with Sierpi\'{n}ski carpet Julia set, and obstructed Thurston maps. Furthermore, we construct the first example of a non-renormalizable polynomial with a dendrite Julia set whose $\operatorname{IMG}$ has exponential growth.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.