Papers
Topics
Authors
Recent
2000 character limit reached

Proof Theory of Constructive Systems: Inductive Types and Univalence (1610.02191v2)

Published 7 Oct 2016 in math.LO

Abstract: In Feferman's work, explicit mathematics and theories of generalized inductive definitions play a central role. One objective of this article is to describe the connections with Martin-Lof type theory and constructive Zermelo-Fraenkel set theory. Proof theory has contributed to a deeper grasp of the relationship between different frameworks for constructive mathematics. Some of the reductions are known only through ordinal-theoretic characterizations. The paper also addresses the strength of Voevodsky's univalence axiom. A further goal is to investigate the strength of intuitionistic theories of generalized inductive definitions in the framework of intuitionistic explicit mathematics that lie beyond the reach of Martin-Lof type theory.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube