Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Regularized Dynamic Boltzmann Machine with Delay Pruning for Unsupervised Learning of Temporal Sequences (1610.01989v1)

Published 22 Sep 2016 in cs.LG, cs.NE, and stat.ML

Abstract: We introduce Delay Pruning, a simple yet powerful technique to regularize dynamic Boltzmann machines (DyBM). The recently introduced DyBM provides a particularly structured Boltzmann machine, as a generative model of a multi-dimensional time-series. This Boltzmann machine can have infinitely many layers of units but allows exact inference and learning based on its biologically motivated structure. DyBM uses the idea of conduction delays in the form of fixed length first-in first-out (FIFO) queues, with a neuron connected to another via this FIFO queue, and spikes from a pre-synaptic neuron travel along the queue to the post-synaptic neuron with a constant period of delay. Here, we present Delay Pruning as a mechanism to prune the lengths of the FIFO queues (making them zero) by setting some delay lengths to one with a fixed probability, and finally selecting the best performing model with fixed delays. The uniqueness of structure and a non-sampling based learning rule in DyBM, make the application of previously proposed regularization techniques like Dropout or DropConnect difficult, leading to poor generalization. First, we evaluate the performance of Delay Pruning to let DyBM learn a multidimensional temporal sequence generated by a Markov chain. Finally, we show the effectiveness of delay pruning in learning high dimensional sequences using the moving MNIST dataset, and compare it with Dropout and DropConnect methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube