The Face Structure and Geometry of Marked Order Polyhedra (1610.01393v2)
Abstract: We study a class of polyhedra associated to marked posets. Examples of these polyhedra are Gelfand-Tsetlin polytopes and cones, as well as Berenstein-Zelevinsky polytopes, all of which have appeared in the representation theory of semi-simple Lie algebras. The faces of these polyhedra correspond to certain partitions of the underlying poset and we give a combinatorial characterization of these partitions. We specify a class of marked posets that give rise to polyhedra with facets in correspondence to the covering relations of the poset. On the convex geometrical side, we describe the recession cone of the polyhedra, discuss products and give a Minkowski sum decomposition. We briefly discuss intersections with affine subspaces that have also appeared in representation theory and recently in the theory of finite Hilbert space frames.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.