Papers
Topics
Authors
Recent
2000 character limit reached

Statistical learning for wind power : a modeling and stability study towards forecasting (1610.01000v2)

Published 4 Oct 2016 in stat.AP and stat.ML

Abstract: We focus on wind power modeling using machine learning techniques. We show on real data provided by the wind energy company Ma{\"i}a Eolis, that parametric models, even following closely the physical equation relating wind production to wind speed are outperformed by intelligent learning algorithms. In particular, the CART-Bagging algorithm gives very stable and promising results. Besides, as a step towards forecast, we quantify the impact of using deteriorated wind measures on the performances. We show also on this application that the default methodology to select a subset of predictors provided in the standard random forest package can be refined, especially when there exists among the predictors one variable which has a major impact.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.