Improved bounds on the diameter of lattice polytopes (1610.00341v1)
Abstract: We show that the largest possible diameter $\delta(d,k)$ of a $d$-dimensional polytope whose vertices have integer coordinates ranging between $0$ and $k$ is at most $kd-\lceil2d/3\rceil$ when $k\geq3$. In addition, we show that $\delta(4,3)=8$. This substantiates the conjecture whereby $\delta(d,k)$ is at most $\lfloor(k+1)d/2\rfloor$ and is achieved by a Minkowski sum of lattice vectors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.