A projection algorithm for non-monotone variational inequalities (1609.09569v2)
Abstract: We introduce and study the convergence properties of a projection-type algorithm for solving the variational inequality problem for point-to-set operators. No monotoni-city assumption is used in our analysis. The operator defining the problem is only assumed to be continuous in the point-to-set sense, i.e., inner- and outer-semicontinuous. Additionally, we assume non-emptiness of the so-called dual solution set. We prove that the whole sequence of iterates converges to a solution of the variational inequality. Moreover, we provide numerical experiments illustrating the behavior of our iterates. Through several examples, we provide a comparison with a recent similar algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.