Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fast learning rates with heavy-tailed losses

Published 29 Sep 2016 in stat.ML and cs.LG | (1609.09481v1)

Abstract: We study fast learning rates when the losses are not necessarily bounded and may have a distribution with heavy tails. To enable such analyses, we introduce two new conditions: (i) the envelope function $\sup_{f \in \mathcal{F}}|\ell \circ f|$, where $\ell$ is the loss function and $\mathcal{F}$ is the hypothesis class, exists and is $Lr$-integrable, and (ii) $\ell$ satisfies the multi-scale Bernstein's condition on $\mathcal{F}$. Under these assumptions, we prove that learning rate faster than $O(n{-1/2})$ can be obtained and, depending on $r$ and the multi-scale Bernstein's powers, can be arbitrarily close to $O(n{-1})$. We then verify these assumptions and derive fast learning rates for the problem of vector quantization by $k$-means clustering with heavy-tailed distributions. The analyses enable us to obtain novel learning rates that extend and complement existing results in the literature from both theoretical and practical viewpoints.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.