Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graph partitioning and a componentwise PageRank algorithm (1609.09068v1)

Published 28 Sep 2016 in cs.DS

Abstract: In this article we will present a graph partitioning algorithm which partitions a graph into two different types of components: the well-known strongly connected components' as well as another type of components we callconnected acyclic component'. We will give an algorithm based on Tarjan's algorithm for finding strongly connected components used to find such a partitioning. We will also show that the partitioning given by the algorithm is unique and that the underlying graph can be represented as a directed acyclic graph (similar to a pure strongly connected component partitioning). In the second part we will show how such an partitioning of a graph can be used to calculate PageRank of a graph effectively by calculating PageRank for different components on the same `level' in parallel as well as allowing for the use of different types of PageRank algorithms for different types of components. To evaluate the method we have calculated PageRank on four large example graphs and compared it with a basic approach, as well as our algorithm in a serial as well as parallel implementation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.