Papers
Topics
Authors
Recent
2000 character limit reached

Tight J-frames in Krein space and the associated J-frame potential (1609.08659v1)

Published 27 Sep 2016 in math.FA

Abstract: Motivated by the idea of $J$-frame for a Krein space $\textbf{\textit{K}}$, introduced by Giribet \textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\'inez Per\'{i}a, P. G. Massey, \textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\bf 393} (2012), 122--137.), we introduce the notion of $\zeta-J$-tight frame for a Krein space $\textbf{\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\textbf{\textit{K}}$ in terms of $\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\zeta-J$-Parseval frames is again a $\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\zeta-J$-tight frame to be minimum.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.