Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantitative estimate on singularities in isoperimetric clusters

Published 27 Sep 2016 in math.AP | (1609.08597v1)

Abstract: We prove a quantitative estimate on the number of certain singularities in almost minimizing clusters. In particular, we consider the singular points belonging to the lowest stratum of the Federer-Almgren stratification (namely, where each tangent cone does not split a $\R$) with maximal density. As a consequence we obtain an estimate on the number of triple junctions in $2$-dimensional clusters and on the number of tetrahedral points in $3$ dimensions, that in turn implies that the boundaries of volume-constrained minimizing clusters form at most a finite number of equivalence classes modulo homeomorphism of the boundary, provided that the prescribed volumes vary in a compact set. The method is quite general and applies also to other problems: for instance, to count the number of singularities in a codimension 1 area-minimizing surface in $\R8$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.