Review: Local Integrals of Motion in Many-Body Localized systems (1609.08076v2)
Abstract: We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motion, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.