Papers
Topics
Authors
Recent
2000 character limit reached

One-Class SVM with Privileged Information and its Application to Malware Detection (1609.08039v2)

Published 26 Sep 2016 in stat.ML, cs.CR, and stat.AP

Abstract: A number of important applied problems in engineering, finance and medicine can be formulated as a problem of anomaly detection. A classical approach to the problem is to describe a normal state using a one-class support vector machine. Then to detect anomalies we quantify a distance from a new observation to the constructed description of the normal class. In this paper we present a new approach to the one-class classification. We formulate a new problem statement and a corresponding algorithm that allow taking into account a privileged information during the training phase. We evaluate performance of the proposed approach using a synthetic dataset, as well as the publicly available Microsoft Malware Classification Challenge dataset.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.