Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Tutorial on Distributed (Non-Bayesian) Learning: Problem, Algorithms and Results

Published 23 Sep 2016 in math.OC, cs.LG, cs.MA, cs.SI, and stat.ML | (1609.07537v1)

Abstract: We overview some results on distributed learning with focus on a family of recently proposed algorithms known as non-Bayesian social learning. We consider different approaches to the distributed learning problem and its algorithmic solutions for the case of finitely many hypotheses. The original centralized problem is discussed at first, and then followed by a generalization to the distributed setting. The results on convergence and convergence rate are presented for both asymptotic and finite time regimes. Various extensions are discussed such as those dealing with directed time-varying networks, Nesterov's acceleration technique and a continuum sets of hypothesis.

Citations (35)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.