Papers
Topics
Authors
Recent
2000 character limit reached

Shear viscosity of nuclear matter (1609.07453v2)

Published 23 Sep 2016 in nucl-th

Abstract: Shear viscosity $\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density $n$ through the mean-field parameter $a$, which describes attractive forces in the VDW equation. In the temperature region $T=15 - 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5 - 1.5)\,n{}_0$, where $n{}_0=0.16\,$fm${-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\eta/s\gg 1$ are, however, found in both the low-density, $n\ll n{}_0$, and high-density, $n>2n{}_0$, regions. This makes the ideal hydrodynamic approach inapplicable for these densities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.