Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-View Constraint Propagation with Consensus Prior Knowledge (1609.06456v1)

Published 21 Sep 2016 in cs.CV

Abstract: In many applications, the pairwise constraint is a kind of weaker supervisory information which can be collected easily. The constraint propagation has been proved to be a success of exploiting such side-information. In recent years, some methods of multi-view constraint propagation have been proposed. However, the problem of reasonably fusing different views remains unaddressed. In this paper, we present a method dubbed Consensus Prior Constraint Propagation (CPCP), which can provide the prior knowledge of the robustness of each data instance and its neighborhood. With the robustness generated from the consensus information of each view, we build a unified affinity matrix as a result of the propagation. Specifically, we fuse the affinity of different views at a data instance level instead of a view level. This paper also introduces an approach to deal with the imbalance between the positive and negative constraints. The proposed method has been tested in clustering tasks on two publicly available multi-view data sets to show the superior performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube