Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stationary averaging for multi-scale continuous time Markov chains using parallel replica dynamics (1609.06363v3)

Published 20 Sep 2016 in math.NA and math.PR

Abstract: We propose two algorithms for simulating continuous time Markov chains in the presence of metastability. We show that the algorithms correctly estimate, under the ergodicity assumption, stationary averages of the process. Both algorithms, based on the idea of the parallel replica method, use parallel computing in order to explore metastable sets more efficiently. The algorithms require no assumptions on the Markov chains beyond ergodicity and the presence of identifiable metastability. In particular, there is no assumption on reversibility. For simpler illustration of the algorithms, we assume that a synchronous architecture is used throughout of the paper. We present error analyses, as well as numerical simulations on multi-scale stochastic reaction network models in order to demonstrate consistency of the method and its efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube