Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Preduals and complementation of spaces of bounded linear operators (1609.05326v4)

Published 17 Sep 2016 in math.FA and math.OA

Abstract: For Banach spaces X and Y, we establish a natural bijection between preduals of Y and preduals of L(X,Y) that respect the right L(X)-module structure. If X is reflexive, it follows that there is a unique predual making L(X) into a dual Banach algebra. This removes the condition that X have the approximation property in a result of Daws. We further establish a natural bijection between projections that complement Y in its bidual and L(X)-linear projections that complement L(X,Y) in its bidual. It follows that Y is complemented in its bidual if and only if L(X,Y) is (either as a module or as a Banach space). Our results are new even in the well-studied case of isometric preduals.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.