Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Viewpoint Selection for Grasp Detection (1609.05247v3)

Published 16 Sep 2016 in cs.RO

Abstract: In grasp detection, the robot estimates the position and orientation of potential grasp configurations directly from sensor data. This paper explores the relationship between viewpoint and grasp detection performance. Specifically, we consider the scenario where the approximate position and orientation of a desired grasp is known in advance and we want to select a viewpoint that will enable a grasp detection algorithm to localize it more precisely and with higher confidence. Our main findings are that the right viewpoint can dramatically increase the number of detected grasps and the classification accuracy of the top-n detections. We use this insight to create a viewpoint selection algorithm and compare it against a random viewpoint selection strategy and a strategy that views the desired grasp head-on. We find that the head-on strategy and our proposed viewpoint selection strategy can improve grasp success rates on a real robot by 8% and 4%, respectively. Moreover, we find that the combination of the two methods can improve grasp success rates by as much as 12%.

Citations (26)

Summary

We haven't generated a summary for this paper yet.