Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Geometry to Detect Grasps in 3D Point Clouds (1501.03100v3)

Published 13 Jan 2015 in cs.RO

Abstract: This paper proposes a new approach to detecting grasp points on novel objects presented in clutter. The input to our algorithm is a point cloud and the geometric parameters of the robot hand. The output is a set of hand configurations that are expected to be good grasps. Our key idea is to use knowledge of the geometry of a good grasp to improve detection. First, we use a geometrically necessary condition to sample a large set of high quality grasp hypotheses. We were surprised to find that using simple geometric conditions for detection can result in a relatively high grasp success rate. Second, we use the notion of an antipodal grasp (a standard characterization of a good two fingered grasp) to help us classify these grasp hypotheses. In particular, we generate a large automatically labeled training set that gives us high classification accuracy. Overall, our method achieves an average grasp success rate of 88% when grasping novels objects presented in isolation and an average success rate of 73% when grasping novel objects presented in dense clutter. This system is available as a ROS package at http://wiki.ros.org/agile_grasp.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andreas ten Pas (9 papers)
  2. Robert Platt (70 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.