Papers
Topics
Authors
Recent
2000 character limit reached

No-Regret Replanning under Uncertainty (1609.05162v1)

Published 16 Sep 2016 in cs.RO and cs.LG

Abstract: This paper explores the problem of path planning under uncertainty. Specifically, we consider online receding horizon based planners that need to operate in a latent environment where the latent information can be modeled via Gaussian Processes. Online path planning in latent environments is challenging since the robot needs to explore the environment to get a more accurate model of latent information for better planning later and also achieves the task as quick as possible. We propose UCB style algorithms that are popular in the bandit settings and show how those analyses can be adapted to the online robotic path planning problems. The proposed algorithm trades-off exploration and exploitation in near-optimal manner and has appealing no-regret properties. We demonstrate the efficacy of the framework on the application of aircraft flight path planning when the winds are partially observed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.