Papers
Topics
Authors
Recent
2000 character limit reached

Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects

Published 15 Sep 2016 in math.AG | (1609.04573v3)

Abstract: We revisit the work of Lehn-Lehn-Sorger-van Straten on twisted cubic curves in a cubic fourfold not containing a plane in terms of moduli spaces. We show that the blow-up $Z'$ along the cubic of the irreducible holomorphic symplectic eightfold $Z$, described by the four authors, is isomorphic to an irreducible component of a moduli space of Gieseker stable torsion sheaves or rank three torsion free sheaves. For a very general such cubic fourfold, we show that $Z$ is isomorphic to a connected component of a moduli space of tilt-stable objects in the derived category and to a moduli space of Bridgeland stable objects in the Kuznetsov component. Moreover, the contraction between $Z'$ and $Z$ is realized as a wall-crossing in tilt-stability. Finally, $Z$ is birational to an irreducible component of Gieseker stable aCM bundles of rank six.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.