Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Flexible Tweedie regression models for continuous data (1609.03297v1)

Published 12 Sep 2016 in stat.ME, stat.AP, and stat.CO

Abstract: Tweedie regression models provide a flexible family of distributions to deal with non-negative highly right-skewed data as well as symmetric and heavy tailed data and can handle continuous data with probability mass at zero. The estimation and inference of Tweedie regression models based on the maximum likelihood method are challenged by the presence of an infinity sum in the probability function and non-trivial restrictions on the power parameter space. In this paper, we propose two approaches for fitting Tweedie regression models, namely, quasi- and pseudo-likelihood. We discuss the asymptotic properties of the two approaches and perform simulation studies to compare our methods with the maximum likelihood method. In particular, we show that the quasi-likelihood method provides asymptotically efficient estimation for regression parameters. The computational implementation of the alternative methods is faster and easier than the orthodox maximum likelihood, relying on a simple Newton scoring algorithm. Simulation studies showed that the quasi- and pseudo-likelihood approaches present estimates, standard errors and coverage rates similar to the maximum likelihood method. Furthermore, the second-moment assumptions required by the quasi- and pseudo-likelihood methods enables us to extend the Tweedie regression models to the class of quasi-Tweedie regression models in the Wedderburn's style. Moreover, it allows to eliminate the non-trivial restriction on the power parameter space, and thus provides a flexible regression model to deal with continuous data. We provide \texttt{R} implementation and illustrate the application of Tweedie regression models using three data sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube