Disciplined Multi-Convex Programming (1609.03285v2)
Abstract: A multi-convex optimization problem is one in which the variables can be partitioned into sets over which the problem is convex when the other variables are fixed. Multi-convex problems are generally solved approximately using variations on alternating or cyclic minimization. Multi-convex problems arise in many applications, such as nonnegative matrix factorization, generalized low rank models, and structured control synthesis, to name just a few. In most applications to date the multi-convexity is simple to verify by hand. In this paper we study the automatic detection and verification of multi-convexity using the ideas of disciplined convex programming. We describe an implementation of our proposed method that detects and verifies multi-convexity, and then invokes one of the general solution methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.