Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Random Matrix Ensembles with Split Limiting Behavior (1609.03120v2)

Published 11 Sep 2016 in math-ph, math.MP, and math.PR

Abstract: We introduce a new family of $N\times N$ random real symmetric matrix ensembles, the $k$-checkerboard matrices, whose limiting spectral measure has two components which can be determined explicitly. All but $k$ eigenvalues are in the bulk, and their behavior, appropriately normalized, converges to the semi-circle as $N\to\infty$; the remaining $k$ are tightly constrained near $N/k$ and their distribution converges to the $k \times k$ hollow GOE ensemble (this is the density arising by modifying the GOE ensemble by forcing all entries on the main diagonal to be zero). Similar results hold for complex and quaternionic analogues. We isolate the two regimes by using matrix perturbation results and a nonstandard weight function for the eigenvalues, then derive their limiting distributions using a modification of the method of moments and analysis of the resulting combinatorics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.