$q$-Difference Kac-Schwarz Operators in Topological String Theory
Abstract: The perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector $|W\rangle$ in the fermionic Fock space that represents a point $W$ of the Sato Grassmannian. $|W\rangle$ is generated from the vacuum vector $|0\rangle$ by an operator $g$ on the Fock space. $g$ determines an operator $G$ on the space $V = \mathbb{C}((x))$ of Laurent series in which $W$ is realized as a linear subspace. $G$ generates an admissible basis ${\Phi_j(x)}{j=0}\infty$ of $W$. $q$-difference analogues $A$, $B$ of Kac-Schwarz operators are defined with the aid of $G$. $\Phi_j(x)$'s satisfy the linear equations $A\Phi_j(x) = qj\Phi_j(x)$, $B\Phi_j(x) = \Phi{j+1}(x)$. The lowest equation $A\Phi_0(x) = \Phi_0(x)$ reproduces the quantum mirror curve in the authors' previous work.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.