Papers
Topics
Authors
Recent
2000 character limit reached

Non-local functionals related to the total variation and connections with Image Processing (1608.08204v1)

Published 29 Aug 2016 in math.OC

Abstract: We present new results concerning the approximation of the total variation, $\int_{\Omega} |\nabla u|$, of a function $u$ by non-local, non-convex functionals of the form $$ \Lambda_\delta u = \int_{\Omega} \int_{\Omega} \frac{\delta \varphi \big( |u(x) - u(y)|/ \delta\big)}{|x - y|{d+1}} \, dx \, dy, $$ as $\delta \to 0$, where $\Omega$ is a domain in $\mathrm{R}d$ and $\varphi: [0, + \infty) \to [0, + \infty)$ is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate and numerous problems remain open. De Giorgi's concept of Gamma-convergence illuminates the situation, but also introduces mysterious novelties. The original motivation of our work comes from Image Processing.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.