Information geometry of sandwiched Rényi $α$-divergence (1608.07977v1)
Abstract: Information geometrical structure $(g{(D_\alpha)}, \nabla{(D_\alpha)},\nabla{(D_\alpha)*})$ induced from the sandwiched R\'enyi $\alpha$-divergence $D_\alpha(\rho|\sigma):=\frac{1}{\alpha (\alpha-1)}\log\,{\rm Tr} \left(\sigma{\frac{1-\alpha}{2\alpha}}\rho\,\sigma{\frac{1-\alpha}{2\alpha}}\right){\alpha}$ on a finite quantum state space $\mathcal{S}$ is studied. It is shown that the Riemannian metric $g{(D_\alpha)}$ is monotone if and only if $\alpha\in(-\infty, -1]\cup [\frac{1}{2},\infty)$, and that the quantum statistical manifold $({\mathcal{S}}, g{(D_\alpha)}, \nabla{(D_\alpha)},\nabla{(D_\alpha)*})$ is dually flat if and only if $\alpha=1$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.