Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Extended Poisson-Tweedie: properties and regression models for count data (1608.06888v2)

Published 24 Aug 2016 in stat.ME

Abstract: We propose a new class of discrete generalized linear models based on the class of Poisson-Tweedie factorial dispersion models with variance of the form $\mu + \phi\mup$, where $\mu$ is the mean, $\phi$ and $p$ are the dispersion and Tweedie power parameters, respectively. The models are fitted by using an estimating function approach obtained by combining the quasi-score and Pearson estimating functions for estimation of the regression and dispersion parameters, respectively. This provides a flexible and efficient regression methodology for a comprehensive family of count models including Hermite, Neyman Type A, P\'olya-Aeppli, negative binomial and Poisson-inverse Gaussian. The estimating function approach allows us to extend the Poisson-Tweedie distributions to deal with underdispersed count data by allowing negative values for the dispersion parameter $\phi$. Furthermore, the Poisson-Tweedie family can automatically adapt to highly skewed count data with excessive zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation of the power parameter. Thus, the proposed models offer a unified framework to deal with under, equi, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies showed that the estimating function approach provides unbiased and consistent estimators for both regression and dispersion parameters. We highlight the ability of the Poisson-Tweedie distributions to deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and illustrate its application with four data analyses. We provide an \texttt{R} implementation and the data sets as supplementary materials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube