Papers
Topics
Authors
Recent
Search
2000 character limit reached

Failure Detection for Facial Landmark Detectors

Published 23 Aug 2016 in cs.CV | (1608.06451v1)

Abstract: Most face applications depend heavily on the accuracy of the face and facial landmarks detectors employed. Prediction of attributes such as gender, age, and identity usually completely fail when the faces are badly aligned due to inaccurate facial landmark detection. Despite the impressive recent advances in face and facial landmark detection, little study is on the recovery from and detection of failures or inaccurate predictions. In this work we study two top recent facial landmark detectors and devise confidence models for their outputs. We validate our failure detection approaches on standard benchmarks (AFLW, HELEN) and correctly identify more than 40% of the failures in the outputs of the landmark detectors. Moreover, with our failure detection we can achieve a 12% error reduction on a gender estimation application at the cost of a small increase in computation.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.