RELARM: A rating model based on relative PCA attributes and k-means clustering (1608.06416v1)
Abstract: Following widely used in visual recognition concept of relative attributes, the article establishes definition of the relative PCA attributes for a class of objects defined by vectors of their parameters. A new rating model (RELARM) is built using relative PCA attribute ranking functions for rating object description and k-means clustering algorithm. Rating assignment of each rating object to a rating category is derived as a result of cluster centers projection on the specially selected rating vector. Empirical study has shown a high level of approximation to the existing S & P, Moody's and Fitch ratings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.