Squares of Low Maximum Degree
Abstract: A graph H is a square root of a graph G if G can be obtained from H by adding an edge between any two vertices in H that are of distance 2. The Square Root problem is that of deciding whether a given graph admits a square root. This problem is only known to be NP-complete for chordal graphs and polynomial-time solvable for non-trivial minor-closed graph classes and a very limited number of other graph classes. We prove that Square Root is O(n)-time solvable for graphs of maximum degree 5 and O(n4)-time solvable for graphs of maximum degree at most 6.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.