Papers
Topics
Authors
Recent
2000 character limit reached

A Note on Koldobsky's Lattice Slicing Inequality (1608.04945v1)

Published 17 Aug 2016 in math.MG

Abstract: $ \newcommand{\R}{{\mathbb{R}}} \newcommand{\Z}{{\mathbb{Z}}} \renewcommand{\vec}[1]{{\mathbf{#1}}} $We show that if $K \subset \Rd$ is an origin-symmetric convex body, then there exists a vector $\vec{y} \in \Zd$ such that \begin{align*} |K \cap \Zd \cap \vec{y}\perp| / |K \cap \Zd| \ge \min(1,c \cdot d{-1} \cdot \mathrm{vol}(K){-1/(d-1)}) \; , \end{align*} for some absolute constant $c> 0$, where $\vec{y}\perp$ denotes the subspace orthogonal to $\vec{y}$. This gives a partial answer to a question by Koldobsky.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.