Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Causal Models by Comparing Interventional Distributions

Published 16 Aug 2016 in cs.AI and stat.ME | (1608.04698v1)

Abstract: The predominant method for evaluating the quality of causal models is to measure the graphical accuracy of the learned model structure. We present an alternative method for evaluating causal models that directly measures the accuracy of estimated interventional distributions. We contrast such distributional measures with structural measures, such as structural Hamming distance and structural intervention distance, showing that structural measures often correspond poorly to the accuracy of estimated interventional distributions. We use a number of real and synthetic datasets to illustrate various scenarios in which structural measures provide misleading results with respect to algorithm selection and parameter tuning, and we recommend that distributional measures become the new standard for evaluating causal models.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.