On conjugacy separability of fibre products
Abstract: In this paper we study conjugacy separability of subdirect products of two free (or hyperbolic) groups. We establish necessary and sufficient criteria and apply them to fibre products to produce a finitely presented group $G_1$ in which all finite index subgroups are conjugacy separable, but which has an index $2$ overgroup that is not conjugacy separable. Conversely, we construct a finitely presented group $G_2$ which has a non-conjugacy separable subgroup of index $2$ such that every finite index normal overgroup of $G_2$ is conjugacy separable. The normality of the overgroup is essential in the last example, as such a group $G_2$ will always posses an index $3$ overgroup that is not conjugacy separable. Finally, we characterize $p$-conjugacy separable subdirect products of two free groups, where $p$ is a prime. We show that fibre products provide a natural correspondence between residually finite $p$-groups and $p$-conjugacy separable subdirect products of two non-abelian free groups. As a consequence, we deduce that the open question about the existence of an infinite finitely presented residually finite $p$-group is equivalent to the question about the existence of a finitely generated $p$-conjugacy separable full subdirect product of infinite index in the direct product of two free groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.