Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Adaptation of Deep Architectures with Reinforcement Learning (1608.02292v1)

Published 8 Aug 2016 in cs.LG and cs.NE

Abstract: Online learning has become crucial to many problems in machine learning. As more data is collected sequentially, quickly adapting to changes in the data distribution can offer several competitive advantages such as avoiding loss of prior knowledge and more efficient learning. However, adaptation to changes in the data distribution (also known as covariate shift) needs to be performed without compromising past knowledge already built in into the model to cope with voluminous and dynamic data. In this paper, we propose an online stacked Denoising Autoencoder whose structure is adapted through reinforcement learning. Our algorithm forces the network to exploit and explore favourable architectures employing an estimated utility function that maximises the accuracy of an unseen validation sequence. Different actions, such as Pool, Increment and Merge are available to modify the structure of the network. As we observe through a series of experiments, our approach is more responsive, robust, and principled than its counterparts for non-stationary as well as stationary data distributions. Experimental results indicate that our algorithm performs better at preserving gained prior knowledge and responding to changes in the data distribution.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.