On the arithmetic of weighted complete intersections of low degree (1608.01703v2)
Abstract: A variety is rationally connected if two general points can be joined by a rational curve. A higher version of this notion is rational simple connectedness, which requires suitable spaces of rational curves through two points to be rationally connected themselves. We prove that smooth, complex, weighted complete intersections of low enough degree are rationally simply connected. This result has strong arithmetic implications for weighted complete intersections defined over the function field of a smooth, complex curve. Namely, it implies that these varieties satisfy weak approximation at all places, that R-equivalence of rational points is trivial, and that the Chow group of zero cycles of degree zero is zero.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.