Local index theory and the Riemann-Roch-Grothendieck theorem for complex flat vector bundles (1608.00324v4)
Abstract: The purpose of this paper is to give a proof of the real part of the Riemann-Roch-Grothendieck theorem for complex flat vector bundles at the differential form level in the even dimensional fiber case. The proof is, roughly speaking, an application of the local family index theorem for a perturbed twisted spin Dirac operator, a variational formula of the Bismut-Cheeger eta form without the kernel bundle assumption in the even dimensional fiber case, and some properties of the Cheeger-Chern-Simons class of complex flat vector bundle.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.