Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neckpinch singularities in fractional mean curvature flows (1607.08032v2)

Published 27 Jul 2016 in math.DG

Abstract: In this paper we consider the evolution of sets by a fractional mean curvature flow. Our main result states that for any dimension $n > 2$, there exists an embedded surface in $\mathbb Rn$ evolving by fractional mean curvature flow, which developes a singularity before it can shrink to a point. When $n > 3$ this result generalizes the analogue result of Grayson for the classical mean curvature flow. Interestingly, when $n = 2$, our result provides instead a counterexample in the nonlocal framework to the well known Grayson Theorem, which states that any smooth embedded curve in the plane evolving by (classical) MCF shrinks to a point.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.