Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mutual Information Optimally Local Private Discrete Distribution Estimation

Published 27 Jul 2016 in cs.IT and math.IT | (1607.08025v1)

Abstract: Consider statistical learning (e.g. discrete distribution estimation) with local $\epsilon$-differential privacy, which preserves each data provider's privacy locally, we aim to optimize statistical data utility under the privacy constraints. Specifically, we study maximizing mutual information between a provider's data and its private view, and give the exact mutual information bound along with an attainable mechanism: $k$-subset mechanism as results. The mutual information optimal mechanism randomly outputs a size $k$ subset of the original data domain with delicate probability assignment, where $k$ varies with the privacy level $\epsilon$ and the data domain size $d$. After analysing the limitations of existing local private mechanisms from mutual information perspective, we propose an efficient implementation of the $k$-subset mechanism for discrete distribution estimation, and show its optimality guarantees over existing approaches.

Citations (85)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.