Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Phase models and clustering in networks of oscillators with delayed coupling (1607.05759v1)

Published 19 Jul 2016 in math.DS and nlin.AO

Abstract: We consider a general model for a network of oscillators with time delayed, circulant coupling. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to study the existence and stability of cluster solutions. Cluster solutions are phase locked solutions where the oscillators separate into groups. Oscillators within a group are synchronized while those in different groups are phase-locked. We give model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.