Papers
Topics
Authors
Recent
2000 character limit reached

Structure-Blind Signal Recovery (1607.05712v2)

Published 19 Jul 2016 in math.ST and stat.TH

Abstract: We consider the problem of recovering a signal observed in Gaussian noise. If the set of signals is convex and compact, and can be specified beforehand, one can use classical linear estimators that achieve a risk within a constant factor of the minimax risk. However, when the set is unspecified, designing an estimator that is blind to the hidden structure of the signal remains a challenging problem. We propose a new family of estimators to recover signals observed in Gaussian noise. Instead of specifying the set where the signal lives, we assume the existence of a well-performing linear estimator. Proposed estimators enjoy exact oracle inequalities and can be efficiently computed through convex optimization. We present several numerical illustrations that show the potential of the approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.