Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spanning Circuits in Regular Matroids (1607.05516v1)

Published 19 Jul 2016 in cs.DS and cs.DM

Abstract: We consider the fundamental Matroid Theory problem of finding a circuit in a matroid spanning a set T of given terminal elements. For graphic matroids this corresponds to the problem of finding a simple cycle passing through a set of given terminal edges in a graph. The algorithmic study of the problem on regular matroids, a superclass of graphic matroids, was initiated by Gaven\v{c}iak, Kr\'al', and Oum [ICALP'12], who proved that the case of the problem with |T|=2 is fixed-parameter tractable (FPT) when parameterized by the length of the circuit. We extend the result of Gaven\v{c}iak, Kr\'al', and Oum by showing that for regular matroids - the Minimum Spanning Circuit problem, deciding whether there is a circuit with at most \ell elements containing T, is FPT parameterized by k=\ell-|T|; - the Spanning Circuit problem, deciding whether there is a circuit containing T, is FPT parameterized by |T|. We note that extending our algorithmic findings to binary matroids, a superclass of regular matroids, is highly unlikely: Minimum Spanning Circuit parameterized by \ell is W[1]-hard on binary matroids even when |T|=1. We also show a limit to how far our results can be strengthened by considering a smaller parameter. More precisely, we prove that Minimum Spanning Circuit parameterized by |T| is W[1]-hard even on cographic matroids, a proper subclass of regular matroids.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube