Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the stability of some isoperimetric inequalities for the fundamental tones of free plates (1607.04163v1)

Published 14 Jul 2016 in math.SP and math.OC

Abstract: We provide a quantitative version of the isoperimetric inequality for the fundamental tone of a biharmonic Neumann problem. Such an inequality has been recently established by Chasman adapting Weinberger's argument for the corresponding second order problem. Following a scheme introduced by Brasco and Pratelli for the second order case, we prove that a similar quantitative inequality holds also for the biharmonic operator. We also prove the sharpness of both such an inequality and the corresponding one for the biharmonic Steklov problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.